Redistribution of synaptophysin and synapsin I during alpha-latrotoxin- induced release of neurotransmitter at the neuromuscular junction

نویسندگان

  • F Torri-Tarelli
  • A Villa
  • F Valtorta
  • P De Camilli
  • P Greengard
  • B Ceccarelli
چکیده

The distribution of two synaptic vesicle-specific phosphoproteins, synaptophysin and synapsin I, during intense quantal secretion was studied by applying an immunogold labeling technique to ultrathin frozen sections. In nerve-muscle preparations treated for 1 h with a low dose of alpha-latrotoxin in the absence of extracellular Ca2+ (a condition under which nerve terminals are depleted of both quanta of neurotransmitter and synaptic vesicles), the immunolabeling for both proteins was distributed along the axolemma. These findings indicate that, in the presence of a block of endocytosis, exocytosis leads to the permanent incorporation of the synaptic vesicle membrane into the axolemma and suggest that, under this condition, at least some of the synapsin I molecules remain associated with the vesicle membrane after fusion. When the same dose of alpha-latrotoxin was applied in the presence of extracellular Ca2+, the immunoreactivity patterns resembled those obtained in resting preparations: immunogold particles were selectively associated with the membrane of synaptic vesicles, whereas the axolemma was virtually unlabeled. Under this condition an active recycling of both quanta of neurotransmitter and vesicles operates. These findings indicate that the retrieval of components of the synaptic vesicle membrane is an efficient process that does not involve extensive intermixing between molecular components of the vesicle and plasma membrane, and show that synaptic vesicles that are rapidly recycling still have the bulk of synapsin I associated with their membrane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptophysin (p38) at the frog neuromuscular junction: its incorporation into the axolemma and recycling after intense quantal secretion

Recycling of synaptophysin (p38), a synaptic vesicle integral membrane protein, was studied by the use of antisera raised against the protein purified from frog brain. When frog cutaneous pectoris muscles were fixed at rest, a bright, specific immunofluorescent signal was observed in nerve-terminal regions only if their plasma membranes had been previously permeabilized. When muscles were fixed...

متن کامل

Exercise differentially regulates synaptic proteins associated to the function of BDNF.

We explored the capacity of exercise to impact select events comprising synaptic transmission under the direction of brain-derived neurotrophic factor (BDNF), which may be central to the events by which exercise potentiates synaptic function. We used a specific immunoadhesin chimera (TrkB-IgG) that mimics the BDNF receptor, TrkB, to selectively block BDNF in the hippocampus during 3 days of vol...

متن کامل

Fluorescence resonance energy transfer detection of synaptophysin I and vesicle-associated membrane protein 2 interactions during exocytosis from single live synapses.

To investigate the molecular interactions of synaptophysin I and vesicle-associated membrane protein 2 (VAMP2)/synaptobrevin II during exocytosis, we have used time-lapse videomicroscopy to measure fluorescence resonance energy transfer in live neurons. For this purpose, fluorescent protein variants fused to synaptophysin I or VAMP2 were expressed in rat hippocampal neurons. We show that synapt...

متن کامل

An Endocytic Scaffolding Protein together with Synapsin Regulates Synaptic Vesicle Clustering in the Drosophila Neuromuscular Junction.

UNLABELLED Many endocytic proteins accumulate in the reserve pool of synaptic vesicles (SVs) in synapses and relocalize to the endocytic periactive zone during neurotransmitter release. Currently little is known about their functions outside the periactive zone. Here we show that in the Drosophila neuromuscular junction (NMJ), the endocytic scaffolding protein Dap160 colocalizes during the SV c...

متن کامل

alpha-latrocrustatoxin increases neurotransmitter release by activating a calcium influx pathway at crayfish neuromuscular junction.

alpha-latrocrustatoxin (alpha-LCTX), a component of black widow spider venom (BWSV), produced a 50-fold increase in the frequency of spontaneously occurring miniature excitatory postsynaptic potentials (mEPSPs) at crayfish neuromuscular junctions but did not alter their amplitude distribution. During toxin action, periods of high-frequency mEPSP discharge were punctuated by periods in which mEP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 110  شماره 

صفحات  -

تاریخ انتشار 1990